
 Technical Reports

Draft Unicode® Technical Standard #58

UNICODE LINK DETECTION AND SERIALIZATION
FORMATTING:

URLS AND EMAIL ADDRESSES
Version 17.0 (draft 5)

Editors Mark Davis, Markus Scherer

Date 2025-10-07

This Version https://www.unicode.org/reports/tr58/tr58-1.html

Previous
Version

none

Latest Version https://www.unicode.org/reports/tr58/

Latest Proposed
Update

https://www.unicode.org/reports/tr58/proposed.html

Revision 1

Summary

There are flaws in certain ways that URLs are typically handled, flaws that substantially affect their
usability for most people in the world — because most people's writing systems don't just consist of A-
Z.

When URLs are stored and exchanged in structured data, the start and end of each URL is clear, and
it can be parsed according to the relevant specifications. However, when URLs appear as unmarked
strings in text content, detecting their boundaries can be challenging. For example, some characters
that are often used as sentence-level punctuation in text, such as parentheses, commas, and periods,
can also be valid characters within a URL. Implementations often do not behave intuitively and
consistently.

When a URL is inserted into text, non-ASCII characters and “special” characters can be percent-
encoded, which can make it easy for a later process to find the start and end of the URL. However,
escaping more characters than necessary, especially normal letters, can make the URL illegible for a
human reader.

Similar problems exist for email addresses.

This document specifies two consistent, standardized mechanisms that address these problems,
consisting of:

1. link detection: a mechanism mechanisms for detecting URLs and email addresses embedded
in plain text that properly handles non-ASCII characters, and

2. minimally escaping: a mechanism mechanisms for minimal escaping of non-ASCII code points
in the Path, Query, and Fragment portions of a URL, and in the local-part of an email address.

These two mechanisms are aligned, so that: The focus is on links with the Schemes http:, https:, and
mailto: — and links where those Schemes are missing but implied. For these cases, the two
mechanisms of detecting and formatting are aligned, so that: a minimally escaped URL string between

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 1/17

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
https://www.unicode.org/reports/tr58/tr58-1.html
https://www.unicode.org/reports/tr58/
https://www.unicode.org/reports/tr58/proposed.html
R McGowan
Text Box
L2/25-264

two spaces in flowing text is accurately detected, and a detected URL works when pasted into address
bars of major browsers.

Status

This is a draft document which may be updated, replaced, or superseded by other documents at any
time. Publication does not imply endorsement by the Unicode Consortium. This is not a stable
document; it is inappropriate to cite this document as other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification. Conformance to the
Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback]. Related
information that is useful in understanding this document is found in the References. For more
information see About Unicode Technical Reports and the Specifications FAQ. Unicode Technical
Reports are governed by the Unicode Terms of Use.

Contents

1 Introduction
2 Conformance

UTS58-C1
UTS58-C2
UTS58-C3

3 Link Detection
Review Note: TBD: Sync ToC entries vs. heading numbers and titles.
3.2 Processes
3.3 Initiation
3.4 Termination
3.5 Properties

3.5.1 Link_Termination Property
3.5.2 Link_Paired_Opener Property

3.6 Termination Algorithm
3.6.1 Link-Detection Algorithm

3.7 Property Assignments
3.7.1 Link_Termination=Hard
3.7.2 Link_Termination=Soft
3.7.3 Link_Termination=Open, Link_Termination=Close
3.7.4 Link_Termination=Include

4 Minimal Escaping
4.1 Minimal Escaping Algorithm

5 Email Addresses
5.1 Minimal Quoting Algorithm

6 Security Considerations
7 Property Data
8 Test Data
9 Stability
10 Migration

10.1 Migration: Link Detection
10.2 Migration: Link Serialization Formatting

References
Acknowledgments
Modifications

1 Introduction

URLs

Review Note: Add to ToC.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 2/17

https://www.unicode.org/reporting.html
https://www.unicode.org/reports/about-reports.html
https://www.unicode.org/faq/specifications.html
https://www.unicode.org/copyright.html

The standards for URLs and their implementations in browsers generally handle Unicode quite well,
permitting people around the world to use their writing systems in those URLs. This is important: in
writing their native languages, the majority of humanity uses characters that are not limited to A-Z, and
they expect other characters to work equally well. But there are certain ways in which their characters
fail to work seamlessly. For example, consider the common practice of providing user handles such as:

x.com/rihanna
bsky.app/profile/jaketapper.bsky.social
www.instagram.com/vancityreynolds/
www.youtube.com/@핑크퐁

The first three of these works well in practice. Copying from the address bar and pasting into text
provides a readable result. However, the fourth example illustrates that copying handles with non-
ASCII characters result in the unreadable
https://www.youtube.com/@%ED%95%91%ED%81%AC%ED%90%81 in many browsers (Safari
excepted). The names also expand in size: https://hi.wikipedia.org/wiki/महात्मा_गांधी turns into a very
long string like https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A4%B9...%E0%A5%80. (While many
people cannot read "महात्मा_गांधी", nobody can read %E0%A4%AE%E0%A4%B9...%E0%A5%80.)
This unintentional obfuscation also happens with URLs using Latin-script characters, such as
https://en.wikipedia.org/wiki/Anton%C3%ADn_Dvo%C5%99%C3%A1k — and very few languages
using Latin-script characters are limited to the ASCII letters A-Z; English being a notable exception.
This situation is doubly frustrating for people because the un-obfuscated URLs such as
https://www.youtube.com/@핑크퐁 and https://en.wikipedia.org/wiki/Antonín_Dvořák work fine as plain
text; you can copy and paste them back into your address bar — they go to the right page and display
properly in the address bar.

The first three of these work well in practice. Copying from the address bar and pasting into text
provides a readable result. However, the last example contains non-ASCII characters. In many
browsers this turns into an unreadable string:

www.youtube.com/@핑크퐁 (desirable display)
https://www.youtube.com/@%ED%95%91%ED%81%AC%ED%90%81 (in many browsers)

The names also expand in size and turn into very long strings:

https://hi.wikipedia.org/wiki/महात्मा_गांधी
https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A4%B9...%E0%A5%80

While many people cannot read "महात्मा_गांधी", nobody can read
%E0%A4%AE%E0%A4%B9...%E0%A5%80. This unintentional obfuscation also happens with URLs
using Latin-script characters:

https://en.wikipedia.org/wiki/Antonín_Dvořák
https://en.wikipedia.org/wiki/Anton%C3%ADn_Dvo%C5%99%C3%A1k

Very few languages using Latin-script characters are limited to the ASCII letters A-Z; English being a
notable exception. This situation is doubly frustrating for people because the un-obfuscated URLs
such as https://www.youtube.com/@핑크퐁 and https://en.wikipedia.org/wiki/Antonín_Dvořák work fine
as plain text; you can copy and paste them back into your address bar — they go to the right page and
display properly in the address bar.

Notes

Following WHATWG URL: Goals, this specification uses the term URL broadly, as
including unescaped non-ASCII characters; that is, as utilizing the formal definition of IRIs.
See also the W3C’s An Introduction to Multilingual Web Addresses.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 3/17

https://url.spec.whatwg.org/#goals
https://www.ietf.org/rfc/rfc3987.html
https://www.w3.org/International/articles/idn-and-iri/

This specification uses the term URL broadly, as including unescaped non-ASCII
characters; in other words, treating it as matching the formal definition of IRIs.
Standardizing on the term “URL” and avoiding the terms “URI” and “IRI” follows the
practice promoted by the WHATWG in URL Standard: Goals.
See also the W3C’s An Introduction to Multilingual Web Addresses.
In examples, links will be shown with a background color, to make the extent of the
linkification clear.
Serialization is the process of translating data into a format that can be stored or
transmitted, and exactly reconstructed later. This document is concerned with serialization
of a URL expressed in Unicode as people would see in an address bar into a readable
textual form, not serialization into an internal format such as Punycode.

Email Addresses

Review Note: Add to ToC.

There is one other area that needs to be fixed in order to not treat non-English languages as second-
class citizens. Email addresses should also work well for all languages. With most email programs,
when someone pastes in the plain text:

The page https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン contains information about
Albert Einstein.

and sends to someone else, they receive it as:

The page https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン contains information about
Albert Einstein.

Displaying Unmarked URLs and Email Addresses

Review Note: Add to ToC.

URLs are also “linkified” in many other applications, such when pasting into a word processor
(triggered by typing a space afterwards, for example). However, many products (many text messaging
apps, video messaging chats, etc.) completely fail to recognize any non-ASCII characters past the
domain name. And even among those that do recognize such non-ASCII characters, there are
gratuitous differences in where they stop linkifying.

Linkification is the process of adding links to URLs and email addresses in plain text input, such as in
emails email body text, text messaging, or video meeting chats. The first step in this process is link
detection, which is determining the boundaries of spans of text that contain URLs. That substring can
then have a link applied to it in output text. The functions that perform these operations are called a
link detector and linkifier, respectively.

The specifications for a URL don’t specify how to handle link detection, since they are only concerned
with the structure in isolation, not when it is embedded within flowing text. The lack of a clear
specification for link detection also causes many implementations to overuse percent escaping for
non-ASCII characters when converting URLs into plain text.

The linkification process for URLs is already fragmented — with different implementations producing
very different results — but it is amplified with the addition of non-ASCII characters, which often have
very different behavior. That is, developers’ lack of familiarity with the behavior of non-ASCII
characters has caused the different implementations of linkification to splinter. Yet non-ASCII
characters are very important for readability. People do not want to see the above URL expressed in
escaped ASCII:

Different implementations linkify URLs and email addresses differently even when they contain only
ASCII characters. The differences are even greater when non-ASCII characters are used. Handling

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 4/17

https://www.ietf.org/rfc/rfc3987.html
https://url.spec.whatwg.org/#goals
https://www.w3.org/International/articles/idn-and-iri/
https://en.wikipedia.org/wiki/Punycode

letters of all writing systems well is very important for usability. Consider the last example above of a
sentence in an email when displayed with a percent-escaped URL:

The page https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB...%E3%83%B3 contains
information about Albert Einstein.

For example, take the lists of links on List of articles every Wikipedia should have in the available
languages. When those links are tested with major products, there are significant differences: any two
implementations are likely to linkify those differently, such as terminating the linkification at different
places, or not linkifying at all. That makes it very difficult to exchange URLs between products within
plain text, which is done surprisingly often — definitely causing problems for implementations that
need predictable behavior.

This inconsistency causes problems for users and software companies. Having consistent rules for
linkification also has additional benefits, leading to solutions for the following reported problems:

If a system allows users to have their own user ids that end up in URLs, like
https://www.linkedin.com/in/my.user.name, it can avoid user ids that have problematic linkification
behavior, like trailing periods after path segments.
Because linkification cannot be predicted for URLs with non-ASCII characters, common practice
is to exchange them with escaped characters, which gives unreadable results such as the long
line above.

If linkification behavior becomes more predictable across platforms and applications, applications will
be able to do minimal escaping. For example, in the following only one character would need
escaping, the %29 — representing an unmatched “)”:

https://ja.wikipedia.org/wiki/アルベルト%29アインシュタイン

Providing a consistent, predictable solution that works well across the world’s languages requires
standardized algorithms to define the behavior, and the corresponding Unicode character properties
covering all Unicode characters.

2 Conformance

UTS58-C1. For a given version of Unicode, a conformant implementation shall replicate the same link
detection results as those produced by Section 3, Link Detection Algorithm.

UTS58-C2. For a given version of Unicode, a conformant implementation shall replicate the same
minimal escaping results as those produced by Section 4, Minimal Escaping.

UTS58-C3. For a given version of Unicode, a conformant implementation shall replicate the same
email link detection results as those produced by Section 5, Email Addresses.

3 Link Detection

The following table shows the relevant parts of a URL. For clarity, the separator characters are
included in the examples. For more information see WhatWG's URL: Example URL Components .

Table 3-1. Parts of a URL

Scheme Host (incl. Domain) Port Path Query Fragment

https:// docs.foobar.com :8000 /knowledge/area/ ?name=article&topic=seo #top

Note that the Scheme, Port, Path, Query, and Fragment are each optional.

Review Note: Draft 5 changes “Protocol” to “Scheme” (which was already also used).

Processes

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 5/17

https://meta.wikimedia.org/wiki/List_of_articles_every_Wikipedia_should_have
https://url.spec.whatwg.org/#example-url-components

There are two main processes involved in Unicode link detection.

1. Initiation. This requires determining the point within plain text where the parsing of a URL starts.
When the Scheme is present for a URL (such as “http://”), determining the start of link detection
is simple. However, the Scheme for a URL is commonly omitted when URLs are represented in
text. For example, the string “adobe.com” should be recognized as being a URL when it occurs in
the body of an email message, even though it does not have a Scheme.

2. Termination. This requires determining the point within plain text where the parsing of a URL
ends. A formal reading of the URL specs allows almost any character in certain fields URL parts,
so it is insufficient for separating the end of the URL from the non-URL text after it.

Initiation

The start of a URL is easy to determine when it has a known Scheme (eg, “https://”).

Implementations have also developed heuristics for determining the start of the URL when the Scheme
is elided, taking advantage of the fact that there are relatively few top-level domains. And those
techniques can be easily applied to internationalized domain names, which still have strong limitations
on the valid characters. So the end of the domain name is also relatively easy to determine. For more
information, see UTS #46, Unicode IDNA Compatibility Processing.

The parsing up to the path, query, or fragment is as specified in WHATWG URL: 4.4. URL parsing.

For example, implementations must terminate link detection if a forbidden host code point is
encountered, or if the host is a domain and a forbidden domain code point is encountered.
Implementations must not linkify if a domain is not a registrable domain. The terms forbidden host
code point, forbidden domain code point, and registrable domain are defined in WHATWG URL: Host
representation.

For example, an implementation would parse to the end of microsoft.com and google.de, foo.рф, or
xn--j1ay.xn--p1ai.

Termination

Termination is much more challenging, because of the presence of characters from many different
writing systems. While small, hard-coded sets of characters suffice for an ASCII implementation, there
are over 150,000 Unicode characters, many with quite different behavior than ASCII. While in theory,
almost any Unicode character can occur in certain fields in a URL URL parts, in practice many
characters have very restricted usage in URLs.

Initiation stops at any Path, Query, or Fragment, so the termination process takes over with a “/”, “?”,
or “#” character. Each Path, Query, or Fragment can contain most Unicode characters. The key is to
be able to determine, given a URL Part (such as a Query), when a sequence of characters should
cause termination of the link detection, even though that character would be valid in the URL
specification.

It is impossible for a link detection algorithm to match user expectations in all circumstances, given the
variation in usage of various characters both within and across languages. So the goal is to cover use
cases as broadly as possible, recognizing that it will sometimes not match user expectations in certain
cases. Exceptional cases (URLs that need to use characters that would terminate) can still be
appropriately linkified if those few characters are represented with % escapes.

At a high level, this specification defines three features:

1. A method for identifying when to terminate link detection based on properties that define contexts
for terminating the parsing of a URL.

This addresses the question, for example, when a trailing period should be counted as part
of included in a link or not.

2. A method for identifying balanced quotes and brackets that enclose a URL.
This addresses the distinction, for example, of enclosing the entire URL in parentheses, vs.
URLs that contain a part that is enclosed in parens, etc.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 6/17

https://www.iana.org/domains/root/db
https://www.unicode.org/reports/tr46/
https://url.spec.whatwg.org/#url-parsing
https://url.spec.whatwg.org/#host-representation
https://url.spec.whatwg.org/#host-representation

3. An algorithm for doing the above, together with an enumerated property and a mapping property.

One of the goals is also predictability; it should be relatively easy for users to understand the link
detection behavior at a high level.

Properties

This specification defines two properties:

Link_Termination (LTerm)
Link_Paired_Opener (LOpener)

Review Note: Should we in fact define distinct short property aliases? If so, then LTerm / LOpener, or
ones that start with “Link”?

Link_Termination Property

Link_Termination is an enumerated property of characters with five enumerated values: {Include,
Hard, Soft, Close, Open}
The short property value aliases are the same as the long ones.

Table 3-2. Link_Termination Property Values

Value Description / Examples

Include There is no stop before the character; it is included in the link.

Example: letters

https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン

Hard The URL terminates before this character.

Example: a space

Go to https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン to find the material.

Soft The URL terminates before this character, if it is followed by /\p{Link_Termination=Soft}*
(\p{Link_Termination=Hard}|$)/

Example: a question mark

https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン?abc

https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン? abc

https://ja.wikipedia.org/wiki/アルベルト・アインシュタイン?

Close If the character is paired with a previous character in the same URL Part (path, query,
fragment) and in the same subpart (that is, not across interior '/' in a path, or across '&' or
'=' in a query), within the same sequence of characters delimited by separators as
described in the Termination Algorithm below, it is treated as Include. Otherwise it is
treated as Hard.

Example: an end parenthesis

https://ja.wikipedia.org/wiki/(アルベルト)アインシュタインアインシュタイン)

(https://ja.wikipedia.org/wiki/アルベルト)アインシュタイン

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 7/17

Value Description / Examples
(https://ja.wikipedia.org/wiki/アルベルトアインシュタイン

Open Used to match Close characters.

Example: same as under Close

Link_Paired_Opener Property

Link_Paired_Opener is a string property of characters, which for each character in
\p{Link_Termination=Close}, returns a character with \p{Link_Termination=Open}.

Example

1. Link_Paired_Opener('}') == '{'

The specification of the characters with each of these property values is given in Property
Assignments.

Termination Algorithm

The termination algorithm assumes that a domain (or other host) has been successfully parsed to the
start of a Path, Query, or Fragment, as per the algorithm in WHATWG URL: 3. Hosts (domains and IP
addresses) .

This algorithm then processes each final URL Part [path, query, fragment] of the URL in turn. It stops
when it encounters a code point that meets one of the terminating conditions and reports the last
location in the current URL Part that is still safely considered part of inside the link. The common
terminating conditions are based on the Link_Termination and Link_Paired_Opener properties:

A Link_Termination=Hard character, such as a space. Within a Path, “?” and “#” are handled as
Hard. Within a Query, “#’ is handled as Hard.

In addition, while processing a certain URL part, its corresponding terminator characters
and sequences also terminate that URL part.

A Link_Termination=Soft character, such as a ? that is followed by a sequence of zero or more
Soft characters, then either a Hard character or the end of the text.
A Link_Termination=Close character, such as a] that does not have a matching Open character in
the same Part of the URL. The matching process uses the Link_Paired_Opener property to
determine the correct Open character, and matches against the top element of a stack of Open
characters.

More formally:

The termination algorithm begins after the Host (and optionally Port) have been parsed, so there is
potentially a Path, Query, or Fragment. In the algorithm below, each of those URL Parts has an
initiator character, zero or more terminator characters, and zero or more clearStackOpen characters.

Table 3-3. Link Termination by URL Part

Part initiator terminators clearStackOpen Conditions

path '/' [?#] [/]

query '?' [#] [=&]

fragment '#' [{:~:}] []

fragment
directive (text)

:~:text= [{:~:}] [-&,{:~:}] Only invoked if in a fragment or in a
fragment directive.
There may be multiple fragment
directives in a single URL.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 8/17

https://url.spec.whatwg.org/#hosts-(domains-and-ip-addresses)
https://url.spec.whatwg.org/#hosts-(domains-and-ip-addresses)

If a future type of directive is defined, a new row will be needed in this table to reflect its structure.

Note about fragment directives: Currently the only fragment directive that has been defined is the
text directive, as in https://example.com#:~:text=foo&text=bar. Additional fragment directives may be
defined in the future, and their internal structure may differ from that of the text directive. At that time,
this algorithm will need to be adjusted, including new rows in the table above and adjusting the
initiators, terminators, and clearStackOpen.
For more information, see URL Fragment Text Directives.

Review Note: In a fragment directive, the dash '-' is used as an affix rather than as a separator like
comma and ampersand: #:~:text=[prefix-,]start[,end][,-suffix]
Discuss whether to keep the dash in clearStackOpen.

Link-Detection Algorithm

In the following:

cp[i] refers to the ith code point in the string being parsed, cp[start] is the first code point being
considered, and n is the length of the string.
For more information on text fragments, see URL Fragment Text Directives.

Review Note: Draft 5 changes details of the algorithm without major logical changes and without
detailed change markup.

Begin with lastSafe=i=start, not with 0.
Upgrade from code point matches to string matches for separators.
Merge the before-loop part initialization into the loop part transition.
The first fragment directive must follow a fragment.
Made the openStack bounded. See the following Review Note.

Review Note: The openStack was unbounded, which is bad for implementations and for security. Draft
5 makes it bounded, with a maximum stack depth of 127. When the stack is at its maximum depth,
then another Open character terminates the link before that character. Discuss the maximum depth
and behavior.

1. Set lastSafe = start — this marks the offset after the last code point that is included in the link
detection (so far).

2. Set part = none.
3. Clear the openStack.
4. Loop from i = start to n - 1

1. If part ≠ none and one of the part.terminators matches at i
1. Set previousPart = part.
2. Set part = none.

2. If part == none then try to match one of the URL Part initiators at i.
1. If none of the initiators match, then stop and return lastSafe.
2. Set part according to which URL Part’s initiator matches.
3. If part is a Fragment Directive and previousPart is neither a Fragment nor a Fragment

Directive, then stop and return lastSafe.
4. Set i to just after the matched part.initiator.
5. Set lastSafe = i.
6. Clear the openStack.
7. Continue loop

3. If one of the part.clearStackOpen elements matches at i
1. Set i to just after the matched part.clearStackOpen element.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 9/17

https://wicg.github.io/scroll-to-text-fragment/#syntax
https://wicg.github.io/scroll-to-text-fragment/#syntax

2. Set lastSafe = i.
3. Clear the openStack.
4. Continue loop

4. Set LT = Link_Termination(cp[i]).
5. If LT == Include

1. Set lastSafe = i + 1.
2. Continue loop

6. If LT == Soft
1. Continue loop

7. If LT == Hard
1. Stop and return lastSafe

8. If LT == Open
1. If openStack.length() == 127, then stop and return lastSafe.
2. Push cp[i] onto openStack
3. Set lastSafe = i + 1.
4. Continue loop.

9. If LT == Close
1. If openStack.isEmpty(), then stop and return lastSafe.
2. Set lastOpen = openStack.pop().
3. If Link_Paired_Opener(cp[i]) == lastOpen

1. Set lastSafe = i + 1.
2. Continue loop.

4. Else stop and return lastSafe.
5. After the loop terminates, return lastSafe.

For ease of understanding, this algorithm does not include all features of URL parsing. In
implementations, the algorithm can be optimized in various ways, of course, as long as the results are
the same.

Property Assignments

The property assignments are currently derived according to the following descriptions. A full listing of
the assignments are supplied in Property Data. Note that most characters that cause link termination
are still valid, but require % encoding.

Link_Termination=Hard

Whitespace, non-characters, deprecated characters, controls, private-use, surrogates, unassigned,...

[\p{whitespace}\p{NChar}[\p{C}-\p{Cf}]\p{deprecated}]

Link_Termination=Soft

Termination characters and ambiguous quotation marks:

\p{Term}

\p{lb=qu}

Link_Termination=Open, Link_Termination=Close

Derived from Link_Paired_Opener property

if Bidi_Paired_Bracket_Type(cp) == Open then Link_Termination(cp) = Open

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 10/17

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[\p{whitespace}\p{NChar}[\p{C}-\p{Cf}]\p{deprecated}]&g=gc
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BTerm%7D&g=gc&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{lb=qu}

else if Bidi_Paired_Bracket_Type(cp) == Close then Link_Termination(cp) = Close

else if cp == "<" then Link_Termination(cp) = Open

else if cp == ">" then Link_Termination(cp) = Close

Link_Termination=Include

All other code points

Link_Paired_Opener

if Bidi_Paired_Bracket_Type(cp) == Close then Link_Paired_Opener(cp) = Bidi_Paired_Bracket(cp)

else if cp == ">" then Link_Paired_Opener(cp) = "<"

else Link_Paired_Opener(cp) = \x{0} none

Only characters with Link_Termination=Close have a Link_Paired_Opener mapping.

See Bidi_Paired_Bracket_Type.

4 Minimal Escaping

The goal is to be able to generate a serialized form of a URL that:

1. is correctly parsed by modern browsers and other devices
2. minimizes the use of percent-escapes
3. is completely link-detected when isolated.

1. For example, “abc.com/path1./path2.” would serialize as "abc.com/path1./path2%2E" so
that linkification will identify all of the serialized form within plain text such as “See
abc.com/path1./path2%2E for more information”.

2. If not surrounded by Hard characters, the linkification may extend beyond the bounds of the
serialized form. For example, “See Xabc.com/path1./path2%2EX for more information”.

The minimal escaping algorithm is parallel to the linkification algorithm. Basically, when serializing a
URL, a character in a Path, Query, or Fragment is only percent-escaped if it is: Hard, Close when
unmatched, or Soft when it is the code point (in) a URL part terminator in the enclosing URL part.

Minimal Escaping Algorithm

This algorithm only handles the formatting of the Path, Query, and Fragment URL Parts. Formatting of
the Scheme, Host, and Port should be done as is customary for those URL Parts. For the Host
(domain name), see also UTS #46: Unicode IDNA Compatibility Processing and its ToUnicode
operation.

In the following:

cp[i] refers to the ith code point in the URL part being serialized, cp[0] is the first code point in
the part, and n is the number of code points.
The algorithm assumes that the Path, Query, and Fragment have the normal interior escaping for
syntactic characters such as the part.terminators and a “/” within part of a Path.
A URL's internal model may contain bytes that arise from a page being in a legacy (non-UTF-8)
character encoding. It is important, especially in the Query, to maintain those bytes even when
they are invalid in UTF-8, such as %FF or %C2%C2. If the URL is known to originate in a page
with a legacy character encoding (such as in an href value in that page), or is otherwise detected
to have any invalid UTF-8 sequences, then an alternate serialization formatting strategy should
be used, such as percent-escaping each non-ASCII byte.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 11/17

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BBidi_Paired_Bracket_Type%21%3DNone%7D&g=Bidi_Paired_Bracket_Type&i=Bidi_Paired_Bracket
https://www.unicode.org/reports/tr46/
https://www.unicode.org/reports/tr46/#ToUnicode
https://www.unicode.org/reports/tr46/#ToUnicode

1. Set output = ""
2. Process each URL Part up to the Path, Query, and Fragment in the normal fashion, successively

appending to output
3. For each URL part in any non-empty Path, Query, Fragment, successively:

1. Append to output: part.initiator
2. Set copiedAlready = 0
3. Clear the openStack
4. Loop from i = 0 to n - 1

1. If part.terminators contains cp[i] one of the part.terminators matches at i
1. Set LT = Hard

2. Else set LT = Link_Termination(cp[i])
3. If part.clearStackOpen contains cp[i] one of the part.clearStackOpen elements matches

at i, clear the openStack.
4. If LT == Include

1. Append to output: any code points between copiedAlready (inclusive) and i
(exclusive)

2. Append to output: cp[i]
3. Set copiedAlready = i + 1
4. Continue loop

5. If LT == Hard
1. Append to output: any code points between copiedAlready (inclusive) and i

(exclusive)
2. Append to output: percentEscape(cp[i])
3. Set copiedAlready = i + 1
4. Continue loop

6. If LT == Soft
1. Continue loop

7. If LT == Open
1. If openStack.length() == 127, then do the same as LT == Hard.
2. Else push cp[i] onto openStack and do the same as LT == Include

8. If LT == Close
1. Set lastOpen = openStack.pop(), or 0 if the openStack is empty
2. If Link_Paired_Opener(cp[i]) == lastOpen

1. Do the same as LT == Include
3. Else do the same as LT == Hard

5. If part is not last
1. Append to output: all code points between copiedAlready (inclusive) and n (exclusive)

6. Else if copiedAlready < n
1. Append to output: all code points between copiedAlready (inclusive) and n - 1

(exclusive)
2. Append to output: percentEscape(cp[n - 1])

4. Return output.

The algorithm can be optimized in various ways, of course, as long as the results are the same. For
example, the interior escaping for syntactic characters can be combined into a single pass.

Additional characters can be escaped to reduce confusability, especially when they are confusable
with URL syntax characters, such as a Ɂ character in a path. See Security Considerations below.

5 Email Addresses

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 12/17

https://util.unicode.org/UnicodeJsps/confusables.jsp?a=%3F

Email address link detection applies similar principles. An email address is of the form local-
part@domain-name. The algorithm is invoked whenever an '@' character is encountered at index n. The
algorithm scans backward from the '@' sign to find the start of the local-part, assuming that another
process has determined that the '@' sign is followed by a valid domain name, terminating at index end
(exclusive).
The pseudocode uses some subfunctions defined after the main body.

1. Let LocalPartUnquoted be the set consisting of [\p{Link_Termination=Include} - [\ "(),\:-<>@\[-\]\{\}]]
2. Let LocalPartQuoted be the set consisting of [^\p{Link_Termination=Hard}["\\]]
3. Review Note for draft 5:

No need to remove the double quote from LocalPartQuoted because it is handled explicitly.
Also no longer removing the backslash from LocalPartQuoted because the draft 4 algorithm
handled it explicitly as well (although with bugs).

4. Scan forward from n+1 to determine if the '@' sign is followed by a valid domain name
(terminating at index end).

5. If there is no such valid domain name, then return a failure code indicating that there was no
email address containing that '@'.

6. Else
7. Review Note: Moved the following special handling of the character immediately before '@' out

of the loop.
8. If n > 0

1. If cp[n - 1] == '\u0022' (double quote "), set start = quoteStart(cp, n - 2) and skip
scanning.

2. Else if cp[n - 1] == '.' || cp[n - 1] == '\\', set start = n and skip scanning.
9. Scan backward through the text from i = n - 1 down to -1

1. If i < 0, set start = 0 and terminate scanning.
2. Else if i == n - 1

1. If cp[i] == '\u0022' (double quote "), set start to be quoteStart(cp, n - 2) and
terminate scanning.

2. Elseif cp[i] == '.', set start = n and terminate scanning.
3. Else If cp[i] == '.'

1. If cp[i + 1] == '.', set start = i + 2 and terminate scanning.
2. Else continue scanning backward.

4. Else if cp[i] is not in LocalPartUnquoted, set start = i + 1 and terminate scanning. —
Note that LocalPartUnquoted is a subset of Link_Termination(cp[i]) == Include.

5. Else if Link_Termination(cp[i]) ≠ Include, set start = i + 1 and terminate scanning.
6. Else continue scanning backwards.

10. If cp[start] == '.', set start = start + 1.
11. If start ≥ n, then return a failure code indicating that there was no email address containing that

'@'.
12. Else return the pair start, end.

The function quoteStart(cp, beforeQuote) processes as follows and returns the start point.

1. If cp[beforeQuote] == '\'
1. Set slashCount = getBackslashCountBefore(cp, beforeQuote)
2. If slashCount is even (the backslash escapes the final double quote), return beforeQuote + 2

2. Scan backward through the text from i = beforeQuote down to -1
3. If i < 0, return 0
4. Else if cp[i] == '\u0022' (double quote ") or cp[i] == '\'

1. Set slashCount = getBackslashCountBefore(cp, i)

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 13/17

2. If slashCount is odd even (the initial double quote is not escaped), return i + 1
3. Else set i = i - slashCount — Skip over slashes
4. Continue scanning backward.

5. Else if cp[i] is not in LocalPartQuoted, return start = i + 1 beforeQuote + 2 — Almost all assigned
characters are permitted, but the quoted local-part must begin with a double quote.

6. Continue scanning backwards.

The function getBackslashCountBefore(cp, i) simply determines the number of '\' characters
immediately, contiguously before the offset i and returns that number.

A quoted local-part may include a broad range of Unicode characters. See RFC6530. For linkification,
the values in a quoted local-part — while broader than in an unquoted locale-part — are more
restrictive to prevent accidentally including linkifying more text than intended, especially since those
code points are unlikely to be handled by mail servers in any event. The algorithm can be optimized in
various ways, including can be adapted to produce an algorithm that is single-pass, as long as it
produces the same results. For details of the format, see RFC6530.

Review Note: The algorithm is somewhat simpler than for URLs, because the structure is simpler.
There are slight complications to the algorithm to handle quoted locale-parts and because a valid
email local-part cannot start or end with a ".", or contain a "..".

This algorithm includes as much as possible given those constraints., for example:

Table 5-1. Email Address Link Detection Examples

See @example.😎 No valid domain name

See @example.com No linkification

See ….@example.com No linkification

See abcd@example.com Stop backing up when a space is hit

See .abcd@example.com Start after the "."

See x..abcd@example.com Start after the ".."

See x.abcd@example.com Include the medial dot.

See アルベルト.アルベルト
@example.com

Handle non-ASCII

See ".\\ア@ ルベ?ルト..アルベル
ト."@example.com

Handle quoted local-parts, which can contain most
characters. The " and \ need to be escaped as \" and \\.

Minimal Quoting Algorithm

The Minimal quoting algorithm for email addresses is straightforward:

If the email address would be completely linkified by the above algorithm without quoting, then
don't quote the local-part; otherwise quote it
To quote the local-part:

1. Escape each instance of '"' or '\' by inserting an extra '\' before it.
2. Then surround the whole by '"' characters

6 Security Considerations

The security considerations for Path, Query, and Fragment are far less important than for Domain
names. See UTS #39: Unicode Security for more information about domain names.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 14/17

https://datatracker.ietf.org/doc/html/rfc6530
https://datatracker.ietf.org/doc/html/rfc6530
https://www.unicode.org/reports/tr39/#Limited_Contexts_for_Joining_Controls

There are documented cases of how Format characters can be used to sneak malicious instructions
into LLMs; see Invisible text that AI chatbots understand and humans can’t?. URLs are just a small
part aspect of the larger problem of feeding clean text to LLMs, both in building them and in querying
them: making sure the text does not have malformed encodings, is in a consistent Unicode
Normalization Form (NFC), and so on.

For security implications of URLs in general, see UTS #39: Unicode Security Mechanisms. For related
issues, see UTS #55 Unicode Source Code Handling. For display of BIDI URLs, see also HL4 in UAX
#9, Unicode Bidirectional Algorithm.

7 Property Data

The assignments of Link_Termination and Link_Paired_Opener property values are in
https://www.unicode.org/Public/17.0.0/linkification/.

Draft 4 proposed the links data folder. This could be confusing. PAG recommends linkification.

LinkTermination.txt
LinkPairedOpener.txt

Review Note: For comparison to the related General_Category values, see the characters in:

(Close_Punctuation + Final_Punctuation - BidiPairedBracketType=Close)
(Initial_Punctuation + Open_Punctuation - BidiPairedBracketType=Open)

8 Test Data

The format for test files is not yet settled, but the files might look something like the following, in
https://www.unicode.org/Public/17.0.0/linkification/.

LinkificationTest.txt
SerializationTest.txt

Review Note: Additional test data with URLs is slated to be added.

Review Note: TBD: Rename serialization to formatting, update the data files for draft 5.

9 Stability

As with other Unicode Properties, the algorithms and property derivations may be changed somewhat
in successive versions to adapt to new information and feedback from developers and end users.

10 Migration

An implementation may wish to just make minimal modifications to its use of existing URL link
detection and serialization formatting code. For example, it may use imported libraries for these
services. The following provides some examples as to how that can be done.

Migration: Link Detection

The implementation may call its existing code library for link detection, but then post-process. Using
such post-processing can retain the existing performance and feature characteristics of the code
library, including the recognition of the Scheme and Host, and then refine the results for the Path,
Query, and Fragment. The typical problem is that the code library terminates too early. For code
libraries that 'mostly' handle non-ASCII characters this will be a fraction of the detected links.

1. Call the existing code library.
2. Let S be the start of the link in plain text as detected by the existing code library, and E be the

offset at the end of that link.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 15/17

https://arstechnica.com/security/2024/10/ai-chatbots-can-read-and-write-invisible-text-creating-an-ideal-covert-channel/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr55/
https://www.unicode.org/reports/tr9/#HL4
https://www.unicode.org/reports/tr9/#HL4
https://www.unicode.org/Public/17.0.0/linkification/LinkTermination.txt
https://www.unicode.org/Public/17.0.0/linkification/LinkPairedOpener.txt
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7BPe%7D%5Cp%7BPf%7D-%5B%3Abpt%3Dc%3A%5D%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7BPs%7D%5Cp%7BPi%7D-%5Cp%7Bbpt%3Do%7D%5D&g=&i=
https://www.unicode.org/Public/17.0.0/linkification/LinkificationTest.txt
https://www.unicode.org/Public/17.0.0/linkification/SerializationTest.txt

3. If E is at the end of the string, or if the code point following E at E, that is, the character
immediately after the offset at the end of the detected link, has the value Link_Termination=Hard,
then return S and E.

4. Scan backwards to find the last initiator ([/?#]) of a Path, Query, or Fragment URL Part.
5. Follow the Termination Algorithm from that point on.

Migration: Link Serialization Formatting

The implementation calls its existing code library for the Scheme and Host. It then invokes code
implementing the Minimal Escaping algorithm for the Path, Query, and Fragment.

References

TBD

Acknowledgments

Thanks to the following people for their contributions and/or feedback on this document: Arnt
Gulbrandsen, Dennis Tan, Elika Etemad, Hayato Ito, Jules Bertholet, Markus Scherer, Mathias
Bynens, Peter Constable, Robin Leroy, [TBD flesh out further]

Modifications

The following summarizes modifications from the previous revision of this document.

Draft 5

In the title, changed Serialization to Formatting; added a subtitle.
Changed the data folder from links to linkification.
Expanded the Summary at the top, and clarified the Introduction.
Clarified the derivation of property values.
Fixed and simplified handling of fragment directives.
Fixed link detection algorithm bugs and changed to substring matching of separators.
Made openStack bounded.
Fixed link escaping issues: String matching, bounded openStack.
Fixed email address termination issues: In a quoted local-part, require an initial double quote
and forbid escaping the final double quote.
More consistent use of “part”/“URL part”.
Settled inconsistent “Protocol” vs. “Scheme” in favor of “Scheme”.
Various minor editorial changes, bug fixes, and typo fixes.

Draft 4

Fleshed out Table of Contents (not highlighted).
Rationalized the handling of fragment directives.
Removed old review notes and Review Issues section.
Fleshed out Email section, and added a corresponding conformance clause.
Added Stability and Migration sections.
Various copy-edits, only highlighted where material.

Modifications for previous versions are listed in those respective versions.

© 2024–2025 Unicode, Inc. This publication is protected by copyright, and permission must be obtained from Unicode, Inc. prior to any
reproduction, modification, or other use not permitted by the Terms of Use. Specifically, you may make copies of this publication and may
annotate and translate it solely for personal or internal business purposes and not for public distribution, provided that any such

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 16/17

https://www.unicode.org/copyright.html

permitted copies and modifications fully reproduce all copyright and other legal notices contained in the original. You may not make
copies of or modifications to this publication for public distribution, or incorporate it in whole or in part into any product or publication
without the express written permission of Unicode.

Use of all Unicode Products, including this publication, is governed by the Unicode Terms of Use. The authors, contributors, and
publishers have taken care in the preparation of this publication, but make no express or implied representation or warranty of any kind
and assume no responsibility or liability for errors or omissions or for consequential or incidental damages that may arise therefrom. This
publication is provided “AS-IS” without charge as a convenience to users.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc. in the United States and other countries.

10/24/25, 10:05 AM Draft UTS #58: Unicode Link Detection and Formatting: URLs and Email Addresses

https://www.unicode.org/reports/tr58/tr58-1.html 17/17

https://www.unicode.org/copyright.html

